こんにちは、ウチダです。
関数の分野において、よく「定義域(ていぎいき)・値域(ちいき)・変域(へんいき)」という用語 $3$ つが登場します。
定義域・値域・変域ってよく聞くけど、違いがイマイチわからないです…。
[/ふきだし]定義域・値域を求める問題の解き方が知りたいです。
[/ふきだし]よって本記事では、定義域・値域・変域の意味の違いから、それぞれを求める問題の解き方まで
- 東北大学理学部数学科卒業
- 実用数学技能検定1級保持
- 高校教員→塾の教室長の経験あり
の僕がわかりやすく解説します。
定義域・値域・変域の違いとは?【すごく単純です】
それぞれの言葉の定義は、以下の通りです。
- 定義域 … $x$(入力)の取り得る範囲
- 値域 … $y$(出力)の取り得る範囲
また、定義域・値域の $2$ つを合わせて「変域」と言います。
つまり、$x$ の変域が定義域であり、$y$ の変域が値域である、というわけです。
定義域とか値域とかって、名前が難しそうだから面食らってたよ~。
[/ふきだし]そうだね。ちなみに言葉として、定義 $↔$ 入力、値 $↔$ 出力、が対応しているから、関数についても理解しておいた方が良いよ。
[/ふきだし]入力?出力?と感じた方は、こちらの記事をご覧ください。
関数を学ぶ上で、これらの言葉の意味を理解することは非常に重要です。
二次関数…?三角関数…?
逆に関数じゃないものって、たとえばどういうもの?
これらについて、わかりやすく丁寧に解説します。 「実は、関数ってよく理解していないんだよなぁ…」と感じている方は必見の内容です。
定義域・値域(・変域)の求め方
さて、では次に定義域から値域を求める問題や、その逆の問題などを解いていきましょう。
定義域から値域を求める問題
問題1.一次関数 $y=2x+1(-1≦x≦1)$ の値域を求めなさい。
まずは一次関数において、定義域が与えられた場合の値域の求め方です。
が、これは単純に $x=-1$ と $x=1$ を代入し、$y$ の値を求めればOKです。
すいません、解答中に出てきた「単調増加」って何ですか?
[/ふきだし]あ、これは「単調増加(たんちょうぞうか)」と言って、この関数は $x$ が増えれば $y$ も増え続ける、という意味だよ。中学や高校では「右肩上がり」なんて表現することもあるね。
[/ふきだし]逆に右肩下がりのグラフであれば、以下のような問題・解答になります。
問題2.一次関数 $y=-2x+3(0≦x≦2)$ の値域を求めなさい。
なぜ単調増加や単調減少であることを気にしなければいけないか。
それは、関数は必ずしも単調な変化ばかりではないからです。
問題3.二次関数 $y=x^2+1(-1≦x≦2)$ の定義域を求めなさい。
二次関数のグラフは、放物線の形ですので、単調な変化ではなく上がり下がりがあります。
この問題3で、前と同じように解いてしまうと、
$$2≦y≦5$$
となってしまいますが、これは間違いです。
どういうことかは、以下の解答をご覧ください。
これが問題1や問題2において、単調増加(減少)と解答に記述した理由です。高校以降の数学では複雑な関数をどんどん扱っていくので、変化が単調でない場合は必ずグラフを書くようにしましょう。
[/ふきだし]値域から定義域を求める問題
あとは同じ要領で解ける問題ですので、軽く見ていきます。
問題4.二次関数 $y=-2(x-1)^2+3(-5≦y≦3)$ の定義域を求めなさい。
この問題も、グラフを書けば解けますか?
[/ふきだし]グラフを書けば、どんな問題でも間違いなく解けます。ただし、$y=-5$ となる $x$ を求めるには、結局二次方程式を解かなければいけません。
[/ふきだし]値域が与えられた場合は、二次関数であれば二次方程式,三次関数であれば三次方程式…と、~次方程式を解かなくてはならないため、ちょっとめんどくさい問題が多いです。
定義域・値域から関数を決定する問題
問題5.一次関数 $y=ax+b(a<0)$ の定義域が $-3≦x≦2$ であり、値域が $-5≦y≦10$ である。このとき、$a$,$b$ を求めなさい。
それでは最後に、一次関数ならではの特徴を活かした、応用問題にチャレンジしてみましょう。
定義域・値域がわかっていれば、関数を決めることもできるんですね!
[/ふきだし]そうです…が、これは一次関数だからできたことです。単調に変化しない関数(たとえば二次関数)だと、$x$ と $y$ の対応関係がわからないため、求めることができません。注意しましょう。
[/ふきだし]定義域・値域・変域に関するまとめ
本記事のポイントをまとめます。
- $x$ の変域が「定義域」、$y$ の変域が「値域」
- グラフを書けば、定義域から値域を求めたり、値域から定義域を求めることができる。
- 二次関数は一次関数と違って、単調に変化しないため、注意が必要。
数学Ⅰ「二次関数」の全 $12$ 記事をまとめた記事を作りました。よろしければこちらからどうぞ。
おわりです。
コメントを残す